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antiferromagnetic quantum spin chains 
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41, Federal Republic of Germany 

Received 2 October 1989 

Abstract. Some exactly solvable q-state vertex models are investigated. We employ inversion 
relations to determine directly the spectra of the transfer matrices in the thermodynamic 
limit by avoiding the more cumbersome Bethe ansatz. The results are applied to related 
quantum spin chains of which two families are SU(q) and SO(q) invariant, respectively. 
Various quantities are calculated, e.g. energy-momentum excitations and the correlation 
length. For q = 3 the SU(q) invariant chain is the pure biquadratic spin-1 Hamiltonian 
which turns out to be non-critical. The ground-state energy, the gap, and the correlation 
length are given. 

1. Introduction 

We study the antiferromagnetic biquadratic spin-1 chain as well as some q-state vertex 
models (q > 2) and associated quantum spin chains. Some of the results we already 
reported in [l]. Renewed interest in quantum spin chains is due to Haldane’s conjecture 
that integral-spin Heisenberg chains are non-critical, i.e. they have an excitation gap 
and a finite correlation length, in contrast to half-integer-spin Heisenberg chains [2,3]. 
These ideas initiated a vivid study of the phase diagram of the bilinear-biquadratic 
spin-1 Hamiltonian [4-111 which is the most general SU(2) invariant three-state model 
with nearest-neighbour interaction 

N 

= C [cos o sj . s ~ + ~  + sin o (sj . s ~ + ~ ) ~ I .  
]=I  

In the sector x/2 I 0 I 5n/4 the model is ferromagnetic with a trivial ground state. 
The (spin-1) Sutherland model O = x/4 is integrable and critical. It was solved 
first via a Bethe ansatz by Uimin [12] and then for arbitrary spin in [13]. Each 
local interaction of this Hamiltonian is basically the projector onto the triplet of two 
neighbouring spins. Furthermore the (spin- 1) Takhtajan-Babujian model 0 = -n/4 is 
exactly solvable [14,15]. It is critical and conformally invariant [16-181. For the point 
characterised by tan 0 = 1/3 there are also some exact results. The Hamiltonian here 
is the sum of all projectors onto the quintets of neighbouring spins and the ground 
state is a valence bond solid (VBS). The existence of a non-vanishing gap [9] is known 
as well as the two-spin correlation function which is decaying exponentially. This 
suggests that a massive phase does develop in the vicinity of the VBS point including 
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Figure 1. Representation of the four vertex types; the spin variables are i # j = 1,. . . ,q. To 
each class one Boltvnann weight is assigned, a, .  . . , d. 

the Heisenberg chain 0 = 0 in agreement with Haldane’s conjecture. This is also 
supported by numerical results for finite chains [4-7,10,11]. 

Whether 0 = k n / 4  are the only critical points in the region -3n/4 < 0 < n/2  
remains unclear because of problems in obtaining definite results from finite lattice data. 
For the biquadratic chain 0 = -n/2, where the Hamiltonian basically is the sum of the 
projectors onto the singlets of neighbouring spins, finite chain studies suggest a massless 
phase [7,10] in contrast to a conjecture in [19]. However, it was shown in [1,20] and 
independently in [21] (building on [22]) that there is a small but non-vanishing mass 
gap = 0.173 1788..  . . The large correlation length < = 21.072 8505. .  . [l] certainly 
explains the problems encountered in numerical works [7,10,11]. Similar results as for 
the biquadratic spin-1 Hamiltonian can be obtained for higher-spin models [l,  23,241 
which are also defined by projectors onto the singlet states of neighbouring spins. 

The paper is organised as follows. In section 2 we define three families of exactly 
solvable q-state vertex models on a two-dimensional square lattice. For these classical 
models the partition function as well as the correlation length is derived. This is achieved 
within a transfer matrix approach by first setting up some functional relations in section 
3 which provide a short-cut method [20,25,26] avoiding the more cumbersome Bethe 
ansatz [27-291. The (inversion) relations are solved in the subsequent sections 4 and 5 
yielding the largest eigenvalue and the next-largest eigenvalues of the transfer matrix. 
From this the partition function and the correlation length can be obtained. In section 
6 one-dimensional quantum spin Hamiltonians are derived which are related to the 
two-dimensional classical vertex models. Among these models are the biquadratic 
spin-1 Hamiltonian and its generalisation to higher spins (family ( 1 ) )  which is SU(q) 
invariant. This and a second family can be written as bilinear-biquadratic models 
in terms of SO(4  generators. The energy-momentum spectrum of the Hamiltonians 
is written down directly by exploiting expressions for the eigenvalues of the transfer 
matrices obtained in sections 4 and 5. Results are given for ground-state energy, 
excitations, gap and correlation length. A detailed proof of the inversion relation (10) 
can be found in the appendix. 

2. Vertex models 

We consider vertex models on a square lattice of M rows and N columns where M 
and N are assumed to be even and cyclic boundary conditions are imposed. To each 
bond a spin variable is attached which can take 4 (2 3) values 1 , .  . . , q. In this work 
only four types of vertex configurations are allowed which are depicted in figure 1.  To 
all vertices of each type one Boltzmann weight a, b, c or d is assigned. 
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Exact results can be obtained for solutions of the star-trianglepang-Baxter equa- 

Solution (1) : 
tion [28]. We investigate three such solutions. 

0 z + 1 - 0  
z + l  

a = l  C =  

(1 - O ) z  + U  

Z f l  
b = O  d = l - c =  

where 

is a constant and z is a (complex) variable. In what follows it will be sometimes useful 
to parametrise z as 

z = exp(1n a . U) (2) 
where 

is a constant and v is the so-called spectral variable. 
Solution (2) : 

where U is the spectral variable. 
Solution (3) : 

(q - 1)1’2 z - 1 
q - 2  

(q - 1)1’2 z-’ - 1 
q - 2  

a = l  C =  

b = O  d =  

where z is a variable which will be parametrised in the following as 
z = exp(ln(q - 1) . U). (6) 

Models (1) and (3) for q = 3 were known to Stroganov [30] who derived the 
partition function in these cases by solving inversion relations. For the general cases 
(1)-(3) Perk and Schultz similarly calculated the partition function [31,32]. In [32] 
some more exactly solvable models can be found within a classification of all solutions 
of the star-triangle equation for a more general class of vertex models than studied 
here. In [33,34] the partition function was calculated again for cases (1) and (3) by 
mapping ‘non-intersecting string models’ onto the self-dual Potts model. Family (2) 
and its partition function were found first in [MI, the Bethe ansatz equations were 
derived by an analytic ansatz in [36] and the algebraic Bethe ansatz was performed in 
1371. 

Finally we wish to remark that the maximal (continuous) symmetry of the row-to- 
row transfer matrices of cases (1) and ( 2 7 ,  i.e. case (2) with minus sign, is SO(q). For 
cases (2+) and (3) there is only the trivial symmetry (id}. 
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3. Functional relations for the transfer matrix 

In this section some properties of the row-to-row transfer matrix T are presented. The 
transfer matrix describes the contribution of a single row with fixed lower and upper 
spin configuration to the partition function. The matrix elements are polynomials in 
the Boltzmann weights (a ,  b,c,d). First a simple symmetry relation is derived from 
TT(a ,b , c ,d )  = T(a,b,d,c) .  Since the weights c and d are interchanged for all families 
by the substitution t’ -+ -U we have TT(u)  = T(-U)  or 

T+(U) = T(-U’). (7) 

A consequence of the star-triangle equation is the commutativity of all transfer matrices 
T for arbitrary spectral variables [28] 

T(u) T ( d )  = T(u’)  T (u) .  (8) 

Equations (7) and (8) imply that T(u) is normal and therefore diagonalisable. From 
(8) one then knows that the set of eigenvectors can be chosen independently of the 
spectral variable U. Hence each eigenvalue A(u) has to share certain properties with the 
entries of the matrix T(u) which are derived by inspection. 

For families (2) and (3) each A(u) is analytic. 
For family (1) A(u) is analytic up to poles of maximal order N at U = (2n+ l )n i /  In a, 
n integer (corresponding to z = -1). 
For families (1) and (3) each A(u) has a period 2ni/ In a or 2ni/ ln(q - l), respec- 
tively. 
For family (2) one has the asymptotic behaviour A(u) N ( u ~ ) ~ ,  U -+ +im. 

From (7) one immediately derives the symmetry relation 

A’(u) = A(-U’). (9) 

At the special points U = f 1 / 2  the Boltzmann weights (a,b,c,d) are equal to 
(l,O,O,l) and (l,O,l,O). The corresponding transfer matrix reduces to a left- or right-shift 
operator, respectively. T(-1/2) and T (  1/2) are inverse. A similar inversion relation is 
still valid in some neighbourhood of U,, = -1/2 

T(U) . T ( U  + 1) = $(u)”I, + O(e-”) (10) 
where I ,  is the identity matrix and O(e-N) is a correction vanishing exponentially in 
the thermodynamic limit. $ is defined differently for the three cases: 

[ l  -(1/2+0)2] [l - ( q ) 2 ( l / 2 + u ) 2 ]  

( s)2 [ l  - (4 - 1)-”2z][1 - (4 - 1)-3’2z-’] 

where z is parametrised by U according to (2) or (6). The proof of (10) is based on a 
vertex identity shown in figure 2 and is described in detail in the appendix. Equation 
(10) directly implies for the eigenvalues A(u) 

(12) A(u) . A(u + 1) = $ ( u ) ~  + O(e-N). 
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Figure 2. Graphical representation of the vertex identity which is the keystone of the 
inversion relation. w is an arbitrary set of weights, KJ and 0 are functions of w. On the 
left-hand side a summation must be performed over the spin variables of the inner bonds. 

4. Largest eigenvalue of the transfer matrix and partition function 

In this section the eigenvalue Ao(u) which is largest in the physical region -1/2 5 
Re (U)  2 1/2 is determined. It is convenient to define 

1 / N  y(u) := lim A. (U) 
N-CC 

which has the meaning of the partition function per site. ~ ( u )  can be calculated 
basically from the inversion relation as is standard by now [28,30]. The required 
properties of y(v) are: 

(i) analyticity in the physical region -1/2 I Re (U) I 1/2t, no zeros therein 

(iii) inversion relation, v ( u ) ~ ( u  + 1) = 4(u). 

(In the case of the first family this scheme is slightly modified. y(u) has poles of 
order 1 at U = (2n + l)lri/ In a, n integer. From the inversion relation one can see with 
some effort that y(u) is anti-periodic, V(U + 2ni/ lna) = -y(u)$. All difficulties could 
be removed by separating an overall weight factor & / ( z  + 1) from the Boltzmann 
weights.) 

There are two ways to proceed. For instance the first two properties of y(u) enable 
one to write Iny(o) as a Fourier series/integral. The Fourier coefficients then can be 
read off from the inversion relation. An alternative way is to work out an ansatz for 
~ ( u )  taking into account all required properties. Then of course a uniqueness argument 
is needed. (Indeed the possibility of determining ~ ( u )  via Fourier transform is such 
a proof. Nevertheless, it is easy to give an independent direct proof. Assume that 
there were two functions yl(u), y2(u) both exhibiting the properties listed above. Then 
f ( u )  := y,(o)/y2(u) would be analytic and non-zero in a region containing the strip 
-1/2 s Re(u) I 1/2. Using the inversion relation !(U) can be continued analytically 
onto the whole complex plane. The continuation satisfies f (o ) f (u  + 1) = 1. Therefore 
it is analytic and non-zero everywhere as well as 2-periodic. Since there is also an 
imaginary period or we have the asymptotic behaviour f ( u )  5 constant, U + fico, it 
follows that f ( u )  is bounded on the whole complex plane. Due to Liouville’s theorem 
f ( u )  is constant and according to f ( u ) f ( u  + 1) = 1 it is + l  or -1. The remaining 

(ii) periodicity/asymptotic behaviour (14) 

t By this, analyticity in some open region containing the strip -1/2 5 Re(uj 5 1/2 is understood. 
$ This is allowed since v(uj is a root of the periodic function &(U). 
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ambiguity of the sign is irrelevant and can be lifted by requiring ~ ( u )  > 0 for physical 
values of U ‘ . )  

Observing that y(v)  is real for real U the symmetry relation (9) applied to (13) yields 

This relation was not needed to prove the uniqueness of ~ ( u ) .  It has to be satisfied 
automatically! (Note that #(U) = #(-U - 1) in (1 1). Then both functions vl(o) := W ( U )  
and v2(u) := W ( - U )  possess all properties mentioned above. The uniqueness implies 
y,(u)  = vZ(u).) Summarising we can say that the partition function per site ~ ( u )  is 
determined by certain analyticity properties together with the inversion relation. The 
symmetry (15) in principal is not needed but may be used in actual calculations which 
are carried out below successively for the three models. 

(1) Here a function v(u) is calculated satisfying the inversion relation. The result 
will exhibit all necessary properties thus qualifying as the correct expression for the 
partition function. The symmetry property is taken into account by the ansatz 

with an unknown function F(z). Inserting (11) and (16) into (14) yields 

{ F ( z ) F ( a z ) } . { F ( I )  a z  F ( k ) }  = {1 - ~ - ” ~ z ] { l  - C ~ - ” ~ ( X Z ) - ~ } .  

This equation is satisfied if 

F(z) F ( r 2 )  = 1 - X-1’2z. 

Iterating the last equation one obtains 

(17) 

This function is well defined and meromorphic on the whole complex plane. Indeed the 
function ~ ( u )  defined by (16) and (19) is (2xi/Incr)-antiperiodic, analytic up to simple 
poles (corresponding to z = -l), and non-zero in -1/2 5 Re (U) I 1/2. 

(2) We employ the ansatz 

The inversion relation (14) is satisfied if 

F ( u ) F ( u + l ) =  ( ? + U )  3 (- + 2  4 + TU). 
The solution is 
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The function defined by (20) and (22) satisfies the required analyticity properties 
especially the asymptotic behaviour ~ ( u )  % ti2, U + fioo, which can be seen from 
T(u + a ) / T ( u  + 6) = v “ - ~ .  

(3) The ansatz 

satisfies the inversion relation (14) if 

F ( z )  F ( ( 4  - 1) z )  = 1 - (q - l)-”*z. 

The correct solution is 

Equations (16), (19), (20), (22), (23) and (25) are the final result for the partition 
function per site ~ ( u ) .  In section 6 the ground-state energy of the related quantum spin 
chain is calculated from ~ ( u ) .  

5. Next-largest eigenvalues and correlation length 

Here all eigenvalues A(u) of the transfer matrix are determined for which 

1 ( U )  := lim - 
~ + m  Ao(ti) 

is finite. The excitation function 1 (U) must satisfy a simple inversion relation obtained 
by dividing equations (12) applied to A(u) and Ao(u): l ( u )  1 (U + 1) = 1. In the same 
way (9) gives rise to the symmetry relation / ‘ ( U )  = /(-U*). Following [20,25,26] the 
excitation function can be determined. The required properties of 1 (U) are : 

(i) analyticity in -1/2 I Re ( U )  I 1/2, zeros are allowed 
(ii) periodicity/asymptotic behaviour 
(iii) inversion relation, 1 (U) 1 (ti + 1) = 1 
(iv) symmetry relation, l ’ (u )  = l ( - u * ) .  

The solution procedure is described in detail for case (1). Case (3) is very similar and 
case (2) can be treated after some slight modifications. 

(1) The first property (analyticity) is an assumption made only for some region 
containing -1/2 I Re (ti) I 1/2. Using the inversion relation, however, the excitation 
function can be continued onto the whole complex plane. For simplicity this continua- 
tion is denoted also by l (U). Since l (U) has zeros in the physical region the continuation 
is a meromorphic function. Applying the inversion relation twice we obtain 

- 1 ( U ) .  l ( u + 2 )  = ~ - 1 
l(ti+ 1) 

Therefore 1 (U) has two independent periods 2 and 2nilIna.  A meromorphic function 
defined on the whole complex plane having two independent periods is an elliptic 
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function. As is well known, it is determined up to a constant factor by its zeros and 
poles. We obtain 

V 

1 (U) = C A s n h  [K’(u - e,)] 
j = l  

where snh is the elliptic snh-function of modulus k E (0,l) which is defined by requiring 
that the corresponding quarter-periods K, K ’  satisfy 

K’/K = (lncc)/n. (30) 

(For definitions of elliptic functions and related quantities see the appendices of 
[25,28].) Oj are the zeros of 1 ( U )  in the physical region whose number is denoted by 
v.  (The identity (29) is proved by dividing the left-hand side by the product on the 
right-hand side. The ratio is an elliptic function without any zeros or poles. According 
to Liouville’s theorem this function has to be constant.) 

A simple argument shows that v must be even. (Each snh factor on the right-hand 
side of (29) is (2ni/Inol)-antiperiodic, but 1 (U) is periodic.) Inserting (29) into the 
inversion relation one obtains 1 = 1 (U) 1 ( U  + 1) = C2 . (n. .  *) = C2 . 1 whereby C is 
determined: C = +1. The final result for the excitation function 1 (U) is 

V 

/ ( U )  = k n &snh [K’(u - Q j ) ] .  

j=1 

The location of zeros Oj is restricted by the symmetry relation l’(o) = ! ( -U’ ) .  It implies 
that for each Oj there must be an Oi such that Oj = -0;. In the simplest case 
( i  = j )  this is satisfied if Re (aj) = 0. Then there are no further restrictions on 0, 
and the excitation function is a superposition of free states. The Oj play the role of 
excitation parameters/rapidities whose number v is even. In the following we assume 
that all values v = 2, 4,.. . are allowed (which can be proved, for example, for the 
six-vertex model). It is somewhat plausible that there are no bound states which would 
be characterised by ‘complex conjugate’ pairs 0, = -0; with i # j .  (The Boltzmann 
weights do not possess a real period which is a necessary condition for bound states in 
the case of the six-vertex model. A rigorous proof, however, is still missing within this 
approach.) 

(2) The reasoning here is basically the same as above. The only change is that one 
has to take into account the absence of an imaginary period. The asymptotic behaviour 
1 (U) N constant, U + +im, gives rise to the occurrence of tan factors in place of snh 
functions. The result is 

where v = 2, 4,. . . and the Oj are imaginary parameters. 
(3) This case is very similar to case (1) where 

1 ( U )  = k n  &snh [K’(u - a,)] 
j=1 
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but here the modulus k is defined by 

K ' I K  = [h(q  - 1)3/.. (34)  

By (30)-(34)  all next-largest eigenvalues of the transfer matrix are given. In the 
next chapter the excitation functions are used for calculating the energy-momentum 
excitations of the related quantum spin chains. 

Knowing the next-largest eigenvalues it is possible to derive the (vertical) correlation 
length 126,381. For cases (1) and ( 3 )  it is 

5 = -1/lnk (35) 

where k is defined by (30) and (34) ,  respectively. For case (2) the correlation length 5 is 
infinite. This 5 is the correlation length of vertically separated spins. It is independent 
of the spectral variable t:. By substituting t: + -U the lattice is rotated by an angle n / 2 .  
Therefore the vertical and horizontal correlation lengths are identical. 

6. Quantum spin chains 

Usually there is a one-dimensional quantum Hamiltonian H which is related to a two- 
dimensional classical model [28,29]. For many exactly solvable models the Hamiltonian 
limit of the transfer matrix is performed at a special point uo of the spectral variable 
where T(t:,) is a simple shift operator. (For our models uo is always equal to -1/2; see 
figure 3 ( a ) . )  This guarantees that the derivative 7"(u0) is a product of T(u,) and a sum 
of local interactions; see figure 3 .  Therefore the logarithmic derivative of T(u) qualifies 
as a Hamiltonian 

N 

H = -(ln T)'(oo) = -E hi 
]=I  

where hj denotes a two-spin operator h acting on sites j and j + 1. (The rotated vertex 
in figure 3 ( c )  or ( d )  is the graphical representation of h.) The row (resp. column) index 
is given by an upper (resp. lower) combined index (PI ,  P2) (resp. (al ,  a2)). 

Case (1) 

Case (2-). For the minus sign in ( 4 )  we have 

The 6 symbol with four arguments is equal to 1 if all entries are identical, 0 otherwise. 
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Figure 3. Graphical representation of identities which establish a relation of the transfer 
matrix T(o)  with some quantum spin chain H. WO denotes the set of weights (a ,  b, c, d)  for 
the spectral variable uo = -1/2, wb denotes the derivatives of the weights with respect to 
t' at UO. According to ( a )  the matrix T(o0) is a shift operator. In ( b )  one of the summands 
of T'(v0) is depicted. Due to identity (c) the term ( b )  can be replaced by ( d ) .  (Note that in 
(c) and ( d )  a summation must be performed over the inner bonds.) 

We want to add that in (36) periodic boundary conditions are used and that the 
momentum operator P (which is the generator of translations, eip = shift operator 
= T(zi,)) is given by 

P = -iln T(u,). (38) 

We briefly describe the symmetries of the Hamiltonians. The corresponding sym- 
metry groups have to cover the symmetries of the transfer matrices but partly turn out 
to be bigger. The maximal symmetry of case (1) is Sl(4) (comprising SU(4) and SO(4)) 
yet with different representations on even and odd sites. For case (2-) the maximal 
symmetry is SO(q), for (2+) it is the trivial group {id}. Case (3) has a q-dimensional 
Abelian symmetry again with different representations on even and odd sites. Appar- 
ently the first two Hamiltonians can be written more nicely. Let S be the 4 ( 4  - 1)/2 
vector of the generators of the group SO(4) which coincides for 4 = 3 with the usual 
SU(2) spin-1 operator. We then have 

The first Hamiltonian can be formulated furthermore in a simple way in terms of 
SU(2) spin-s operators sj (with 2s + 1 = 4 )  
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where the polynomial P [. . .] basically describes a projection onto the singlet state of 
the neighbouring spins 

2s 

jo' + 1 )  
P [XI = -1 + q n ( 1 - 

j = l  

By (36) and (38) the Hamiltonian H and the momentum operator P are related to 
T(u).  Therefore all energy-momentum eigenvalues can be derived from the spectrum 
of T(u).  The ground-state energy E, := l i m ~ + + =  E,/N is determined by the partition 
function (per site) 

= -(In ~ ) ' ( u , ) .  (42) 

More interesting are the (low-lying) energy-momentum excitations which are calculated 
from the excitation function 1 ( U )  

E - E ,  = -(ln /)'(U,) 

P - Pa = -i In I (uo) .  
(43) 

Since 1 (U) is a product of independent factors the excitations turn out to be sums of 
independent elementary momenta and energies, p i  and & ( p i )  

i= I 

i= 1 

where the dispersion ~ ( p )  is given by 

(k, K' are defined differently for cases ( 1 )  and (3)!) 

value of v which is 2 
Obviously the Hamiltonian of case (1) has a gap ~ ( 0 )  multiplied by the minimal 

where CL is defined in (3). The Hamiltonians of case (2) are gapless. In case (3) the gap 
is 

(3) (47) 
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These results are consistent with the findings for the correlation length 5 which is the 
same as for the corresponding vertex model, see (35). Therefore cases (1) and (3) are 
non-critical and case (2) is critical for all q > 2. 

We discuss now the Hamiltonians (1) and (2-) for the lowest value q = 3. For 
this value both Hamiltonians (1) and (2-) turn out to be special cases of the bilinear- 
biquadratic spin-1 Hamiltonian, see (39). Model (1) essentially is the biquadratic 
Hamiltonian, fi = - (Sj . Sj+ , ) * .  From (16) and (42) the ground-state energy can be 
calculated numerically 

Eo = -2.796 863.. . . (48) 

The biquadratic Hamiltonian is non-critical since it has a non-zero energy gap d and 
a finite correlation length 5 which proves the conjecture of [19]. d can be calculated 
from (46) by taking into account the scale factor for fi 

where z = [ i ( l  + 6)14 was inserted. From (35) we obtain the correlation length 

5 =-l / Ink=21.0728505 . . .  (50) 

where k was calculated from requirement (30) and from standard formulae for elliptic 
quantities; see the appendices of [25,28]. These results, notably (48) and (49), have 
been found independently also by Barber and Batchelor by using a quite different 
method [21] thereby clarifying and extending the observations made by Parkinson [22]. 
The rather large value of the correlation length (50) may explain the difficulties in 
drawing definite conclusions from the numerical treatment of finite chains. The largest 
chain considered in [ l l ]  had length 26! The degeneracy of the ground state which 
could not be determined within our approach is expected on physical grounds to be 
twofold due to dimerisation. 

The second Hamiltonian (2-) coincides for q = 3 with the (spin-1) Takhtajan- 
Babujian model 0 = -n/4 [14,15]. The ground-state energy and the dispersion (45) 
confirm known results [14]. 

Very recently the work in [21] was extended to higher-spin chains [23,24] which 
are identical with family (1) for arbitrary q. In [23,24] these q-state models could be 
mapped to the quantum Hamiltonian limit of the q2-state Potts model for finite chains 
with free ends and finally to the Bethe-ansatz solvable spin-1/2 XXZ model. The 
conclusions of [23,24] are in accordance with our findings [I]. 
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k 

Figure 4. Definition of the matrices M(k,1 ) .  (i, j )  is a combined row index, (m, n )  the 
column index, i, j ,  k ,  1, m, n = 1,. . . , q,  On the right-hand side a summation over the inner 
bond must be performed. 

Appendix 

In this appendix the inversion relation (10) is proved. Some q2 x q2 matrices 
M ( k ,  I )  (k ,  1 = 1,. . . , q )  are defined graphically in figure 4. The argument (k ,  I )  specifies 
one of these matrices (whose number is 4 , ) ;  it is no row or column index. 

First one has to prove the existence of a q2 x q2 matrix V such that 

where 

( 4  
k = l  y ( k , l )  := 
otherwise 

and O(U - uo) is a (q2  - 1) x (q2 - 1) matrix whose elements are analytic functions of U 
and possess a zero at u0 = -1/2. For this proof define a q2 vector X by 

X(m,n) := 6 (m, 4. (A31 
X,, . . . , X q 2  may be some completion such that X ,  X, ,  . . . , X q l  are linearly independent. 
Define 

v := ( X ,  x*,. . . , X q 2 ) .  (A4) 
For U = uo we have 

M o ( k , l ) [ ~ , ~ l  = d ( i , j ) d ( k , m ) d ( I , n ) .  

Hence all columns of Mo(k,  I )  are multiples of X so that 

0 

0 
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where each * denotes a suitable (complex) number. Due to the analyticity of the 
elements of M ( k ,  I )  

M ( k , I )  . v = v . 

* . . . *  

O(u - CO) 

* 

According to the vertex identity represented in figure 2, X is an eigenvector of M ( k ,  1) 
with eigenvalue y ( k ,  I ) .  Therefore the first column of M ( k ,  I )  . V must be identical to 
y ( k ,  I )  . X .  Using (A7) this implies 

M ( k , I ) .  v = v . 

which proves (Al). 

? @ , I )  * . . . * 
0 

O(u - uo) 

0 

In order to prove finally (10) one has to observe that T(u) T(u + 1) basically is a 
product of N matrices M p  of the kind M ( k , I ) :  

= Tr 

+ O((u - I J ~ ) ~ )  if all upper and lower 
indices are identical =I O((V - otherwise. 
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